Minggu, 30 Desember 2012


SEJARAH GEOMETRI NON EULCIDE

       Awal abad ke-19 akhirnya akan menyaksikan langkah-langkah yang menentukan dalam penciptaan non-Euclidean geometri. Sekitar tahun 1830, matematikawan Hungaria János Bolyai dan matematikawan Rusia Nikolai Lobachevsky secara terpisah diterbitkan risalah pada geometri hiperbolik. Akibatnya, geometri hiperbolik disebut Bolyai-Lobachevskian geometri, baik sebagai matematikawan, independen satu sama lain, adalah penulis dasar non-Euclidean geometri. Gauss disebutkan kepada ayah Bolyai, ketika ditampilkan karya Bolyai muda, bahwa ia telah dikembangkan seperti geometri sekitar 20 tahun sebelumnya, meskipun ia tidak mempublikasikan. Sementara Lobachevsky menciptakan geometri non-Euclidean dengan meniadakan paralel mendalilkan, Bolyai bekerja di luar geometri di mana kedua Euclidean dan geometri hiperbolik yang mungkin tergantung pada k parameter. Bolyai berakhir karyanya dengan menyebutkan bahwa tidak mungkin untuk memutuskan melalui penalaran matematis saja jika geometri alam semesta fisik Euclid atau non-Euclidean, ini adalah tugas untuk ilmu fisik.
       Bernhard Riemann, dalam sebuah kuliah yang terkenal pada 1854, mendirikan bidang geometri Riemann, membahas khususnya ide-ide sekarang disebut manifold, Riemannian metrik, dan kelengkungan. Ia dibangun sebuah keluarga tak terbatas geometri yang tidak Euclidean dengan memberikan rumus untuk keluarga metrik Riemann pada bola satuan dalam ruang Euclidean. Yang paling sederhana ini disebut geometri berbentuk bulat panjang dan dianggap menjadi geometri non-Euclidean karena kurangnya garis paralel. [9]
 [Sunting] Terminologi
       Itu Gauss yang menciptakan istilah “non-euclidean geometri” [10] Dia merujuk pada karyanya sendiri yang hari ini kita sebut geometri hiperbolik.. Beberapa penulis modern yang masih menganggap “non-euclidean geometri” dan “geometri hiperbolik” menjadi sinonim. Pada tahun 1871, Felix Klein, dengan mengadaptasi metrik dibahas oleh Arthur Cayley pada tahun 1852, mampu membawa sifat metrik menjadi sebuah lokasi yang proyektif dan karena itu mampu menyatukan perawatan geometri hiperbolik, euclidean dan berbentuk bulat panjang di bawah payung projective geometri. [ 11] Klein bertanggung jawab untuk istilah “hiperbolik” dan “eliptik” (dalam sistem, ia disebut geometri Euclidean “parabola”, sebuah istilah yang belum selamat dari ujian waktu). Pengaruhnya telah menyebabkan penggunaan saat ini dari “geometri non-euclidean” untuk berarti baik geometri “hiperbolik” atau “berbentuk bulat panjang”.
       Ada beberapa hebat matematika yang akan memperpanjang daftar geometri yang harus disebut “non-euclidean” dengan berbagai cara [12] Dalam disiplin ilmu lainnya., Fisika terutama matematika paling, istilah “non-euclidean” sering diartikan tidak Euclidean .
 [Sunting] aksioma dasar non-Euclidean geometri
       Geometri Euclidean aksiomatik dapat dijelaskan dalam beberapa cara. Sayangnya, sistem yang asli Euclid lima postulat (aksioma) bukan salah satu dari ini sebagai bukti nya mengandalkan asumsi tak tertulis beberapa yang juga seharusnya diambil sebagai aksioma. Sistem Hilbert yang terdiri dari 20 aksioma [13] paling dekat mengikuti pendekatan Euclid dan memberikan pembenaran untuk semua bukti Euclid. Sistem lain, menggunakan set yang berbeda dari istilah terdefinisi mendapatkan geometri yang sama dengan jalan yang berbeda. Dalam semua pendekatan, bagaimanapun, ada aksioma yang secara logis setara dengan kelima postulat Euclid, paralel dalil. Hilbert menggunakan bentuk aksioma Playfair, sementara Birkhoff, misalnya, menggunakan aksioma yang mengatakan bahwa “tidak ada sepasang segitiga serupa tapi tidak kongruen.” Dalam salah satu sistem, penghapusan satu aksioma yang setara dengan postulat sejajar, dalam bentuk apapun yang diperlukan, dan meninggalkan semua aksioma lainnya utuh, menghasilkan geometri absolut. Sebagai pertama 28 proposisi Euclid (dalam The Elements) tidak memerlukan penggunaan postulat paralel atau apa setara dengan itu, mereka semua pernyataan benar dalam geometri mutlak [14].
       Untuk mendapatkan geometri non-Euclidean, paralel dalil (atau ekuivalen) harus diganti oleh negasinya. Meniadakan bentuk aksioma Playfair, karena itu adalah pernyataan majemuk (… terdapat satu dan hanya satu …), bisa dilakukan dengan dua cara. Entah ada akan ada lebih dari satu baris melalui paralel titik ke garis diberikan atau akan ada tidak ada garis melalui titik paralel ke garis yang diberikan. Dalam kasus pertama, menggantikan paralel dalil (atau ekuivalen) dengan pernyataan “Di pesawat, diberi titik P dan garis l tidak melewati P, terdapat dua garis melalui P yang tidak memenuhi l” dan menjaga semua aksioma lainnya, hasil geometri hiperbolik [15]. Kasus kedua tidak ditangani dengan mudah. Cukup mengganti paralel mendalilkan dengan pernyataan, “Dalam pesawat, diberi titik P dan garis l tidak melewati P, semua garis melalui P memenuhi l”, tidak memberikan satu set konsisten aksioma. Ini mengikuti sejak garis paralel ada di geometri mutlak [16], tetapi pernyataan ini mengatakan bahwa tidak ada garis paralel. Masalah ini dikenal (dalam kedok yang berbeda) untuk Khayyam, Saccheri dan Lambert dan merupakan dasar untuk menolak mereka apa yang dikenal sebagai “kasus sudut tumpul”. Untuk mendapatkan satu set konsisten aksioma yang meliputi aksioma ini tentang tidak memiliki garis paralel, beberapa aksioma lain harus tweak. Penyesuaian harus dibuat tergantung pada sistem aksioma yang digunakan. Beberapa diantaranya tweak akan memiliki efek memodifikasi kedua postulat Euclid dari pernyataan bahwa segmen garis dapat diperpanjang tanpa batas waktu untuk pernyataan bahwa garis tak terbatas. Geometri eliptik Riemann muncul sebagai geometri paling alami memuaskan aksioma ini.

SEJARAH KALKULUS

       Kalkulus (Bahasa Latin: calculus, artinya “batu kecil”, untuk menghitung) adalah cabang ilmu matematika yang mencakup limit, turunan, integral, dan deret takterhingga. Kalkulus adalah ilmu mengenai perubahan, sebagaimana geometri adalah ilmu mengenai bentuk dan aljabar adalah ilmu mengenai pengerjaan untuk memecahkan persamaan serta aplikasinya. Kalkulus memiliki aplikasi yang luas dalam bidang-bidang sains, ekonomi, dan teknik; serta dapat memecahkan berbagai masalah yang tidak dapat dipecahkan dengan aljabar elementer.
       Kalkulus memiliki dua cabang utama, kalkulus diferensial dan kalkulus integral yang saling berhubungan melalui teorema dasar kalkulus. Pelajaran kalkulus adalah pintu gerbang menuju pelajaran matematika lainnya yang lebih tinggi, yang khusus mempelajari fungsi dan limit, yang secara umum dinamakan analisis matematika.
       Sejarah perkembangan kalkulus bisa ditilik pada beberapa periode zaman, yaitu zaman kuno, zaman pertengahan, dan zaman modern.
       Pada periode zaman kuno, beberapa pemikiran tentang kalkulus integral telah muncul, tetapi tidak dikembangkan dengan baik dan sistematis. Perhitungan volume dan luas yang merupakan fungsi utama dari kalkulus integral bisa ditelusuri kembali pada Papirus
       Moskwa Mesir (c. 1800 SM) di mana orang Mesir menghitung volume piramida terpancung. Archimedes mengembangkan pemikiran ini lebih jauh dan menciptakan heuristik yang menyerupai kalkulus integral.
       Pada zaman pertengahan, matematikawan India, Aryabhata, menggunakan konsep kecil takterhingga pada tahun 499 dan mengekspresikan masalah astronomi dalam bentuk persamaan diferensial dasar. Persamaan ini kemudian mengantar Bhaskara II pada abad ke-12 untuk mengembangkan bentuk awal turunan yang mewakili perubahan yang sangat kecil takterhingga dan menjelaskan bentuk awal dari “Teorema Rolle“. Sekitar tahun 1000, matematikawan Irak Ibn al-Haytham (Alhazen) menjadi orang pertama yang menurunkan rumus perhitungan hasil jumlah pangkat empat, dan dengan menggunakan induksi matematika, dia mengembangkan suatu metode untuk menurunkan rumus umum dari hasil pangkat integral yang sangat penting terhadap perkembangan kalkulus integral. Pada abad ke-12, seorang Persia Sharaf al-Din al-Tusi menemukan turunan dari fungsi kubik, sebuah hasil yang penting dalam kalkulus diferensial.  Pada abad ke-14, Madhava, bersama dengan matematikawan-astronom dari mazhab astronomi dan matematika Kerala, menjelaskan kasus khusus dari.. deret Taylor, yang dituliskan dalam teks Yuktibhasa.
       Pada zaman modern, penemuan independen terjadi pada awal abad ke-17 di Jepang oleh matematikawan seperti Seki Kowa. Di Eropa, beberapa matematikawan seperti John Wallis danIsaac Barrow memberikan terobosan dalam kalkulus. James Gregory membuktikan sebuah kasus khusus dari teorema dasar kalkulus pada tahun 1668.
        Leibniz dan Newton mendorong pemikiran-pemikiran ini bersama sebagai sebuah kesatuan dan kedua orang ilmuwan tersebut dianggap sebagai penemu kalkulus secara terpisah dalam waktu yang hampir bersamaan. Newton mengaplikasikan kalkulus secara umum ke bidang fisikasementara Leibniz mengembangkan notasi-notasi kalkulus yang banyak digunakan sekarang.
        Ketika Newton dan Leibniz mempublikasikan hasil mereka untuk pertama kali, timbul kontroversi di antara matematikawan tentang mana yang lebih pantas untuk menerima penghargaan terhadap kerja mereka. Newton menurunkan hasil kerjanya terlebih dahulu, tetapi Leibniz yang pertama kali mempublikasikannya. Newton menuduh Leibniz mencuri pemikirannya dari catatan-catatan yang tidak dipublikasikan, yang sering dipinjamkan Newton kepada beberapa anggota dari Royal Society.
        Pemeriksaan secara terperinci menunjukkan bahwa keduanya bekerja secara terpisah, dengan Leibniz memulai dari integral dan Newton dari turunan. Sekarang, baik Newton dan Leibniz diberikan penghargaan dalam mengembangkan kalkulus secara terpisah. Adalah Leibniz yang memberikan nama kepada ilmu cabang matematika ini sebagai kalkulus, sedangkan Newton menamakannya “The science of fluxions“.
        Sejak itu, banyak matematikawan yang memberikan kontribusi terhadap pengembangan lebih lanjut dari kalkulus.
 Kalkulus menjadi topik yang sangat umum di SMA dan universitas zaman modern. Matematikawan seluruh dunia terus memberikan kontribusi terhadap perkembangan kalkulus.
Pengaruh penting
       Walau beberapa konsep kalkulus telah dikembangkan terlebih dahulu di Mesir, Yunani, Tiongkok, India, Iraq, Persia, dan Jepang, penggunaaan kalkulus modern dimulai di Eropa pada abad ke-17 sewaktu Isaac Newton dan Gottfried Wilhelm Leibniz mengembangkan prinsip dasar kalkulus. Hasil kerja mereka kemudian memberikan pengaruh yang kuat terhadap perkembangan fisika.
       Aplikasi kalkulus diferensial meliputi perhitungan kecepatan dan percepatan, kemiringan suatu kurva, dan optimalisasi. Aplikasi dari kalkulus integral meliputi perhitungan luas, volume, panjang busur, pusat massa, kerja, dan tekanan. Aplikasi lebih jauh meliputi deret pangkat dan deret Fourier.
       Kalkulus juga digunakan untuk mendapatkan pemahaman yang lebih rinci mengenai ruang, waktu, dan gerak. Selama berabad-abad, para matematikawan dan filsuf berusaha memecahkan paradoks yang meliputi pembagian bilangan dengan nol ataupun jumlah dari deret takterhingga. Seorang filsuf Yunani kuno memberikan beberapa contoh terkenal seperti paradoks Zeno. Kalkulus memberikan solusi, terutama di bidang limit dan deret takterhingga, yang kemudian berhasil memecahkan paradoks tersebut.
Aplikasi
      Pola spiral logaritma cangkang Nautilus adalah contoh klasik untuk menggambarkan perkembangan dan perubahan yang berkaitan dengan kalkulus.
       Kalkulus digunakan di setiap cabang sains fisik, sains komputer, statistik, teknik, ekonomi, bisnis, kedokteran, kependudukan, dan di bidang-bidang lainnya. Setiap konsep di mekanika klasik saling berhubungan melalui kalkulus. Massa dari sebuah benda dengan massa jenis yang tidak diketahui, momen inersia dari suatu objek, dan total energi dari sebuah objek dapat ditentukan dengan menggunakan kalkulus.
       Dalam subdisiplin listrik dan magnetisme, kalkulus dapat digunakan untuk mencari total fluks dari sebuah medan elektromagnetik . Contoh historis lainnya adalah penggunaan kalkulus di hukum gerak Newton, dinyatakan sebagai laju perubahan yang merujuk pada turunan: Laju perubahan momentum dari sebuah benda adalah sama dengan resultan gaya yang bekerja pada benda tersebut dengan arah yang sama.
       Bahkan rumus umum dari hukum kedua Newton: Gaya = Massa × Percepatan, menggunakan perumusan kalkulus diferensial karena percepatan bisa dinyatakan sebagai turunan dari kecepatan. Teori elektromagnetikMaxwell dan teori relativitas Einstein juga dirumuskan menggunakan kalkulus diferensial.


SEJARAH STATISTIKA

       Statistika adalah ilmu yang mempelajari bagaimana merencanakan, mengumpulkan, menganalisis, menginterpretasi, dan mempresentasikandata. Singkatnya, statistika adalah ilmu yang berkenaan dengan data. Istilah ‘statistika’ (bahasa Inggris: statistics) berbeda dengan ‘statistik’ (statistic). Statistika merupakan ilmu yang berkenaan dengan data, sedang statistik adalah data, informasi, atau hasil penerapan algoritma statistika pada suatu data. Dari kumpulan data, statistika dapat digunakan untuk menyimpulkan atau mendeskripsikan data; ini dinamakanstatistika deskriptif. Sebagian besar konsep dasar statistika mengasumsikan teori probabilitas. Beberapa istilah statistika antara lain: populasi,sampel, unit sampel, dan probabilitas.
       Statistika banyak diterapkan dalam berbagai disiplin ilmu, baik ilmu-ilmu alam (misalnya astronomi dan biologi maupun ilmu-ilmu sosial (termasuk sosiologi dan psikologi), maupun di bidang bisnis, ekonomi, dan industri. Statistika juga digunakan dalam pemerintahan untuk berbagai macam tujuan; sensus penduduk merupakan salah satu prosedur yang paling dikenal. Aplikasi statistika lainnya yang sekarang popular adalah prosedur jajak pendapat atau polling (misalnya dilakukan sebelum pemilihan umum), serta jajak cepat (perhitungan cepat hasil pemilu) atau quick count. Di bidang komputasi, statistika dapat pula diterapkan dalam pengenalan pola maupun kecerdasan buatan
Sejarah
       Penggunaan istilah statistika berakar dari istilah istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italiastatista (“negarawan” atau “politikus”).
       Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara (state)”. Pada awal abad ke-19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembaga-lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat.
       Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama peluang. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson (metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, sertapsikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika(atau biostatistika), dan psikometrika.
       Meskipun ada pihak yang menganggap statistika sebagai cabang dari matematika, tetapi sebagian pihak lainnya menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika.

Beberapa kontributor statistika
Carl Gauss
Blaise Pascal
Sir Francis Galton
William Sealey Gosset (dikenal dengan sebutan “Student”)
Karl Pearson
Sir Ronald Fisher
Gertrude Cox
Charles Spearman
Pafnuty Chebyshev
Aleksandr Lyapunov
Isaac Newton
Abraham De Moivre
Adolph Quetelet
Florence Nightingale
John Tukey
George Dantzig
Thomas Bayes
Konsep dasar
       Dalam mengaplikasikan statistika terhadap permasalahan sains, industri, atau sosial, pertama-tama dimulai dari mempelajari populasi. Maknapopulasi dalam statistika dapat berarti populasi benda hidup, benda mati, ataupun benda abstrak. Populasi juga dapat berupa pengukuran sebuah proses dalam waktu yang berbeda-beda, yakni dikenal dengan istilah deret waktu.
      Melakukan pendataan (pengumpulan data) seluruh populasi dinamakan sensus. Sebuah sensus tentu memerlukan waktu dan biaya yang tinggi. Untuk itu, dalam statistika seringkali dilakukan pengambilan sampel (sampling), yakni sebagian kecil dari populasi, yang dapat mewakili seluruh populasi. Analisis data dari sampel nantinya digunakan untuk menggeneralisasi seluruh populasi.
       Jika sampel yang diambil cukup representatif, inferensial (pengambilan keputusan) dan simpulan yang dibuat dari sampel dapat digunakan untuk menggambarkan populasi secara keseluruhan. Metode statistika tentang bagaimana cara mengambil sampel yang tepat dinamakanteknik sampling.
      Analisis statistik banyak menggunakan probabilitas sebagai konsep dasarnya hal terlihat banyak digunakannya uji statistika yang mengambil dasar pada sebaran peluang. Sedangkan matematika statistika merupakan cabang dari matematika terapan yang menggunakan teori probabilitas dan analisis matematika untuk mendapatkan dasar-dasar teori statistika.
       Ada dua macam statistika, yaitu statistika deskriptif dan statistika inferensial. Statistika deskriptif berkenaan dengan deskripsi data, misalnya dari menghitung rata-rata dan varians dari data mentah; mendeksripsikan menggunakan tabel-tabel atau grafik sehingga data mentah lebih mudah “dibaca” dan lebih bermakna. Sedangkan statistika inferensial lebih dari itu, misalnya melakukan pengujian hipotesis, melakukanprediksi observasi masa depan, atau membuat model regresi.
       Statistika deskriptif berkenaan dengan bagaimana data dapat digambarkan dideskripsikan) atau disimpulkan, baik secara numerik (misalnya menghitung rata-rata dan deviasi standar) atau secara grafis (dalam bentuk tabel atau grafik), untuk mendapatkan gambaran sekilas mengenai data tersebut, sehingga lebih mudah dibaca dan bermakna.
       Statistika inferensial berkenaan dengan permodelan data dan melakukan pengambilan keputusan berdasarkan analisis data, misalnya melakukan pengujian hipotesis, melakukan estimasi pengamatan masa mendatang (estimasi atau prediksi), membuat permodelan hubungan (korelasi, regresi, ANOVA, deret waktu), dan sebagainya.
Metode Statistika
Dua jenis penelitian: eksperimen dan survai
       Terdapat dua jenis utama penelitian: eksperimen dan survei. Keduanya sama-sama mendalami pengaruh perubahan pada peubah penjelas dan perilaku peubah respon akibat perubahan itu. Beda keduanya terletak pada bagaimana kajiannya dilakukan.
       Suatu eksperimen melibatkan pengukuran terhadap sistem yang dikaji, memberi perlakuan terhadap sistem, dan kemudian melakukan pengukuran (lagi) dengan cara yang sama terhadap sistem yang telah diperlakukan untuk mengetahui apakah perlakuan mengubah nilai pengukuran. Bisa juga perlakuan diberikan secara simultan dan pengaruhnya diukur dalam waktu yang bersamaan pula. Metode statistika yang berkaitan dengan pelaksanaan suatu eksperimen dipelajari dalam rancangan percobaan (desain eksperimen).
       Dalam survey, di sisi lain, tidak dilakukan manipulasi terhadap sistem yang dikaji. Data dikumpulkan dan hubungan (korelasi) antara berbagai peubah diselidiki untuk memberi gambaran terhadap objek penelitian. Teknik-teknik survai dipelajari dalam metode survei.
       Penelitian tipe eksperimen banyak dilakukan pada ilmu-ilmu rekayasa, misalnya teknik, ilmu pangan, agronomi, farmasi, pemasaran(marketing), dan psikologi eksperimen.
Penelitian tipe observasi paling sering dilakukan di bidang ilmu-ilmu sosial atau berkaitan dengan perilaku sehari-hari, misalnya ekonomi, psikologi dan pedagogi, kedokteran masyarakat, dan industri.
Tipe pengukuran
       Ada empat tipe pengukuran atau skala pengukuran yang digunakan di dalam statistika, yakni: nominal, ordinal, interval, dan rasio. Keempat skala pengukuran tersebut memiliki tingkat penggunaan yang berbeda dalam riset statistik.
Skala nominal hanya bisa membedakan sesuatu yang bersifat kualitatif (misalnya: jenis kelamin, agama, warna kulit).
Skala ordinal selain membedakan juga menunjukkan tingkatan (misalnya: pendidikan, tingkat kepuasan).
Skala interval berupa angka kuantitatif namun tidak memiliki nilai nol mutlak (misalnya: tahun, suhu dalam Celcius).
Skala rasio berupa angka kuantitatif yang memiliki nilai nol mutlak.
Teknik-teknik statistika
Beberapa pengujian dan prosedur yang banyak digunakan dalam penelitian antara lain:
Analisis regresi dan korelasi
Analisis varians (ANOVA)
khi-kuadrat
Uji t-Student
Statistika Terapan
Bebebarapa ilmu pengetahuan menggunakan statistika terapan sehingga mereka memiliki terminologi yang khusus. Disiplin ilmu tersebut antara lain:
Aktuaria (penerapan statistika dalam bidang asuransi)
Biostatistika atau biometrika (penerapan statistika dalam ilmu biologi)
Statistika bisnis
Ekonometrika
Psikometrika
Statistika sosial
Statistika teknik atau teknometrika
Fisika statistik
Demografi
Eksplorasi data (pengenalan pola)
Literasi statistik
Analisis proses dan kemometrika (untuk analisis data kimia analis dan teknik kimia)

       Statistika memberikan alat analisis data bagi berbagai bidang ilmu. Kegunaannya bermacam-macam: mempelajari keragaman akibat pengukuran, mengendalikan proses, merumuskan informasi dari data, dan membantu pengambilan keputusan berdasarkan data. Statistika, karena sifatnya yang objektif, sering kali merupakan satu-satunya alat yang bisa diandalkan untuk keperluan-keperluan di atas.

Tidak ada komentar:

Poskan Komentar